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Abstract— Within a recently developed low-power ad hoc
network system, we present a transport protocol (JTP) whose
goal is to reduce power consumption without trading off delivery
requirements of applications. JTP has the following features: it
is lightweight whereby end-nodes control in-network actions by
encoding delivery requirements in packet headers; JTP enables
applications to specify a range of reliability requirements, thus
allocating the right energy budget to packets; JTP minimizes
feedback control traffic from the destination by varying its
frequency based on delivery requirements and stability of the
network; JTP minimizes energy consumption by implementing
in-network caching and increasing the chances that data re-
transmission requests from destinations “hit” these caches, thus
avoiding costly source retransmissions; and JTP fairly allocates
bandwidth among flows by backing off the sending rate of a
source to account for in-network retransmissions on its behalf.
Analysis and extensive simulations demonstrate the energy gains
of JTP over one-size-fits-all transport protocols.

I. INTRODUCTION

Motivation and Scope: Wireless ad hoc networks are plagued
with unique challenges: contention for the wireless medium,
time-varying topology due to the variable quality of links or
mobility, and battery power constraints. A primary goal of such
a network is to minimize the usage of energy so as to extend
its lifetime while meeting the requirements of its applications.

To this end, much of the efforts have targeted improving
the routing and lower layers of the protocol stack (e.g. [1],
[2]). At the transport layer, enhancements to the TCP protocol
have been devised (e.g. [3]-[5]) and some new protocols have
been proposed to provide TCP-like reliability semantics over
wireless ad hoc networks (e.g. [6]). However, these transport
protocols only had the goal of improving goodput in the face of
the intrinsic characteristics of wireless multi-hop environments
without consideration to energy costs [7] or to the varying
levels of reliability requirements of applications.

Recently, the JAVeLEN (Joint Architecture Vision for Low
Energy Networking) architecture has been developed to elevate
energy efficiency as a first-class optimization metric at all
protocol layers, from physical to transport [8], [9]. JAVELEN’s
design ensures that energy gains obtained in one layer would
not be offset by incompatibilities and/or inefficiencies in other
layers. The developed system has demonstrated vast energy
savings. For each bit of user’s data delivered, the JAVeLEN
system uses approximately 100 times less energy compared
to a baseline OLSR-over-802.11 system [9]. Most of this
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energy efficiency comes not from reducing the transmission
(or reception) power of the radios, but rather from reducing
ancillary costs. The radios are turned off when not being
used to deliver data, and higher layer protocols are made
parsimonious in their use of the network.

Our Contributions: JTP, JAVeLEN’s transport protocol, me-
diates between an application’s need to share information of
varying importance over the network, and JAVELEN’s goal of
minimizing energy expenditure per successfully delivered bit.
In this paper, we present and evaluate the design and novel
features of JTP, which are summarized as follows:

e To the best of our knowledge, JTP is the first wireless ad
hoc end-to-end transport protocol designed to perform hop-
by-hop soft-state operations to improve (goodput and energy)
performance while preserving the end-to-end principle [10].
JTP employs mechanisms akin to the Dynamic Packet State
[11] to avoid maintaining per-flow state.

o JTP exploits any energy-gain opportunities provided by the
applications. Historically, transport protocols have offered a
particular reliability/QoS model and the application’s task was
to pick the transport protocol whose model most closely met
the application’s needs (e.g. UDP, TCP, ITP [12], RTP [13]).
JTP’s modular design separates the transport protocol’s func-
tionalities into application-specific and network-specific, al-
lowing any application to tailor the protocol’s behavior based
on its specific QoS semantics, and thus JTP acts as a “generic”
transport protocol. To this end, JTP expands the notion of per-
packet energy budgets [14], which are allocated to specify how
much energy the network should invest in trying to deliver
a packet, based on the packet’s individual importance to the
application as well as current energy costs.

e In JTP, the receiver is fully responsible for controlling
all transmission parameters, including the per-packet energy
budget, the connection’s sending rate, retransmission requests
for missing/lost packets, as well as the frequency of such
controls. To the best of our knowledge, JTP is the first
transport protocol that supports variable destination-controlled
feedback trying to keep feedback as low as the stability and
reliability of the network permits.

e JTP implements a caching mechanism which enables in-
termediate nodes along the path of a JTP connection to
temporarily store traversing packets. This enables the recovery
of lost packets as close to the receiver as possible. These
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pipelines of caches along paths generalize the single-level
caching often employed in cellular-type (single wireless-hop)
networks [4]. To increase the chances of “hitting” the caches,
JTP employs a rate-based flow control whose goal is to avoid
contention, thus making the “routing cost” at the two ends of
links symmetric, and so are the computed paths taken by data
and retransmission requests.

e To allocate bandwidth fairly among flows in the presence of
in-network caching and retransmissions, a JTP sender backs
off its sending rate to account for “internal” retransmissions
triggered from caches on its behalf.

Organization of the Paper: Section Il describes related
work. Section 1l presents the architectural elements of JTP,
and its cross-layer interactions. JTP’s support for adjustable
QoS is discussed in Section V. The destination-based quality
monitoring and control is described in Section V. Section VI
discusses in-network caching and its implications on fairness
and flow control. Section VII presents simulation results. An
appendix contains analysis of stability of the rate-based JTP
flow control, and of the energy gains from caching.

Il. RELATED WORK

Extensive studies (e.g. [15]) have demonstrated the inad-
equacy of TCP to serve as a transport protocol in wireless
environments. Enhancements have mainly focused on allevi-
ating the effects of assuming that packet losses are only due
to congestion.

Proxy-based approaches: Focus on hiding wireless losses
from the TCP sender (e.g. [3], [4]) by retransmitting from
caches at the wireline-wireless boundary. Ludwig has shown
that, if not designed carefully, end-to-end and in-network
retransmissions, used together, can cause worse performance
than either alone [16]. Energy conservation in multi-hop ad
hoc networks led us to extend this concept to retransmissions
from caches anywhere along the wireless path.

End-to-end approaches: Attempt to distinguish the type
of loss either explicitly (e.g. ATCP [5]) or implicitly (e.g.
WTCP [17]). Even perfect knowledge of the reason of packet
loss (e.g. congestion-induced vs. transmission error) at the
sender often does not improve throughput performance [18],
[19]. Moreover, these schemes suffer from the slow adaptation
of TCP’s AIMD mechanism to the fast changing conditions of
wireless links. TCP-Westwood [20] addresses this problem by
augmenting AIMD with an estimate of the available bandwidth
measured based on the ACK reception rate.

Receiver-based control: The sender centric approach of TCP
requires frequent feedback which causes congestion and forces
the sender to back off. A receiver centric flavor of TCP
(RCP [21]) has been proposed, however the rate of the
backward ACK stream is not reduced.

Rate-based flow control: To ameliorate the ACK compression
problem, rate-based protocols (cf. [22]) have been proposed,
whereby the available rate is explicitly collected and fed back
to the sender (e.g. ATP [6]). These solutions still use frequent
constant rate feedback which competes with data flows for
resources.

Application-specific protocols: Transport protocols cognizant
of a certain application’s QoS requirements have been devised
(e.g. RTP [13], ITP [12]). Our JTP protocol is more generic
than these proposals as it enables any application to not only
influence the flow and error control mechanisms but also in-
network decisions regarding the handling of its packets.
Energy-conscious scheduling: In all aforementioned re-
search, energy consumption has not been examined. Ap-
proaches have been proposed to monitor and even shape
application’s data to turn on and off the network interface
for energy savings, while still satisfying application’s require-
ments (e.g. [23]). These monitoring techniques are hard to
apply in wireless ad hoc networks, since each node is also a
router as well as an end-node. The tradeoff between throughput
performance and energy costs (due to transmission power and
error control) was analyzed in [24] in the context of proxy-
based schemes.

For wireless ad hoc networks, we will demonstrate in this
paper, that even if network nodes are turned off when there
is no data to transmit or receive, an energy-aware transport
protocol, such as JTP, can achieve greater energy gains by
turning on the radios only when it is absolutely necessary.
To this end, JTP minimizes control traffic and avoids data
transmissions that are unnecessary for meeting given delivery
requirements of applications.

Sensor protocols: Energy-aware transport protocols have been
proposed in the realm of sensor networks (e.g. PSFQ [25]).
Given the goal of one-to-many reliable delivery in such
sensor network realm (e.g. to (re-)program the sensors), issues
that arise in ad hoc networks regarding the fair allocation
of resources among flows and the reduction of in-network
overhead have not been considered.

Other wireline protocols: Other protocols, proposed for
wireline networks (e.g. SCTP [26]) suffer from inefficiencies
similar to TCP when employed in wireless ad hoc environ-
ments.

I1l1. JTP DESIGN

Figure 1 shows the elements of the JTP architecture; the
path of a JTP connection consists of the source, intermediate
nodes, and the destination. The JTP packet is routed along
the path, and its hop-by-hop processing and transmission
parameters (e.g. available path rate, energy budget, selective
negative acknowledgments) are encoded in its header. The
destination executes two JTP processes: a path monitor which
aggregates path quality measurements collected by JTP pack-
ets, and a path (flow) controller which updates the trans-
mission parameters of the JTP connection upon significant
and persistent change in path quality. The transmitter JTP
process at the source uses these transmission parameters, as
well as knowledge of mid-path recovery actions encoded in
JTP acknowledgments, to control the sending of new packets.

Underlying substrate: JTP is currently implemented over the
lower layers of JAVeLEN [8], [9]. The physical layer (PHY)
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Fig. 1. Elements of JTP

uses dual signaling-data radios, whereby a low-power low-
rate signaling radio wakes up a high-power high-rate data
radio only when necessary. The MAC layer employs pseudo-
random codes for implementing uncorrelated (but predictable)
wakeup slotted schedules for the signaling radios. Thus, when
the signaling radio of a neighbor node is predicted to be
on, a node uses its signaling radio to request its neighbor to
wake up its data radio for reception. We note that, together
with frequency hopped OFDM radio transmissions, the prob-
abilistic MAC of JAVeLEN practically implements collision-
free access. The routing layer of JAVELEN collects link-state
information using hazy-sighted scoping [2] so a node receives
more frequent link-state updates from closer nodes. JAVELEN
assigns a (quantized) higher (inferior) routing metric to links
with smaller signal-to-noise margins. Thus, packets are (next-
hop) forwarded over minimum-energy paths.

A. Dynamic Packet Sate

1) Data Packets: As a data packet travels from the source
to the destination of a JTP connection, several fields in its
header get updated:

e Available rate: The available rate of a node represents its
current available reception capacity determined by its current
rate of unused (idle) receive wakeup slots. At each node
visited, a packet is stamped with the minimum available rate
measured so far along the path of the JTP connection. This
available rate is then used by the JTP flow controller at
the destination to update the sending rate of the source, as
described in Section V. Since a JTP packet may trigger more
than one MAC-level packet (slot), the available rate value
must be normalized by the average number of MAC-level
transmissions, which is computed as the inverse of the success
probability of delivery measured for the link. Since JAVeLEN
provides a practically collision-free MAC layer, the maximum
receiving rate of a node represents its effective share of the
channel. Hence, if the JTP flow controller does not allow this
available rate to drop to zero, contention-induced losses are
avoided.

e Energy budget: The source initially assigns each packet an
energy budget value, which is then reduced at every node along
the path by the transmission energy actually used to send the
packet successfully through each link. A packet is dropped
whenever it runs out of energy. This approach provides an
energy-conscious mechanism for dealing with routing loops
(as opposed to the traditional hop-count TTL). Furthermore,

it implicitly implements a per-packet access control whereby
a packet is dropped if faced with a sudden change in net-
work conditions which cause higher energy expenditure. In
the latter case, a retransmission of the packet can make it
through when the network condition returns to normal. If the
condition does not change (i.e., it is a persistently high energy
state), the source will eventually obtain new (higher) energy
requirements from the destination and will update the energy
budget assigned to packets.

e Loss tolerance: A source node encodes the desired end-to-
end loss tolerance in packet headers. Each node along the path
computes the minimal number of transmission attempts to the
next hop, given the remaining length of the path and packet’s
loss tolerance. The packet is dropped if this pre-determined
maximum number of local attempts is exceeded. As described
in Section 1V, before forwarding the packet, the node updates
the loss tolerance field so any left-over attempts (from the pre-
determined maximum number) do not get used downstream,
thus reducing the variability in energy consumption across
nodes along the path.

2) Acknowledgment Packets: JTP acknowledgment pack-
ets (ACK) carry in their headers a list of requested retransmis-
sions from the destination. As ACKSs travel back from the des-
tination to the source, the encoded requested retransmissions
are updated to reflect retransmissions triggered by cache hits
at intermediate nodes. As discussed in Section VI, this informs
the source to refrain from unnecessarily retransmitting those
packets locally retransmitted inside the network on its behalf.

B. JTP Architecture

The functionalities of JTP are categorized into application-

specific and network-specific modules. This modularity makes
JTP a more versatile transport protocol. In this work, we focus
on bulk data transfers over wireless ad hoc networks.
e The application-specific module provides the following
services: fragmentation/reassembly; passing QoS requirements
(e.g. reliability level) to the transfer module in order to influ-
ence in-network packet-handling decisions; and flow control
and retransmission requests only for those missing packets that
are important to meet the reliability target of the application.
e The network-specific modules include: the transfer module,
which manages JTP connections and implements the path
monitor and the (contention-avoidance rate-based) controller
of per-packet transmission parameters; the send module which
assigns the proper radio profile for each transmitted packet
based on the quality of service requirements encoded in the
packet header; and the forwarding module which caches data
packets, locally retransmits missing packets from the cache,
and updates the packet’s header with current local statistics
on rate, transmission energy, etc.

The remaining modules provide support services such
as queuing for managing incoming and outgoing packets,
caching, and routing for managing topological information
from the network layer.



C. Cross Layer Interactions

The operation of JTP requires the crafting of cross-layer in-
teractions to enable transport tasks to expend minimal amounts
of resources while satisfying the end-to-end semantics of
application data transfers. Besides the common interactions
with neighboring layers (i.e. the network and application
layers), JTP performs direct interactions with the data link
(MAC) layer and receives information from the physical layer
(PHY).

JTP can influence the transmission parameters used by the
MAC layer on a packet by packet basis. This is achieved
through the use of radio profiles, which are registered by JTP
with the network layer. The parameters that JTP can influence
include:

e Transmission power: JTP can set the power level to be used
by the sender for every packet based on measured pathloss of
the link.

e Number of link access attempts: JTP can limit the number
of times a (sending) node will try unsuccessfully to wake up
a neighboring (receiving) node.

o Number of data transmissions: JTP can limit the number of
retransmission attempts made by the link layer.

JTP also obtains valuable information from MAC layer,
including link metrics such as packet loss rate and pathloss
(the latter is obtained by the MAC from the PHY layer), and
nodal metrics, such as available receiving rate (throughput).

We note that JTP can operate within any network archi-
tecture, other than JAVELEN, as long as the aforementioned
inter-layer interfaces are present. For example, JTP may obtain
the available nodal throughput from an 802.11 MAC using
estimation techniques such as [27]. Furthermore, although
energy minimization is JAVeLEN’s main objective, JTP’s goal
could be thought of as more general, that of minimizing
resource usage for each application data bit delivered.

IV. ADJUSTABLE QOS REQUIREMENTS

In this section we take reliability as an example QoS metric,
and we show how JTP incorporates reliability requirements of
applications in order to achieve energy savings in the realm
of ad hoc networks.

Not all applications (e.g. voice, images [12]) require full
reliability to perform well. Given reliability targets from
applications (provided by the application module), and knowl-
edge of packet loss rates (provided by the MAC layer), JTP
influences the minimal effort to impose on the network to
deliver only “needed” packets. Specifically, JTP controls the
number of link-layer transmission attempts on a per packet
basis. In JTP, the reliability level is expressed in terms of a
loss tolerance percentage (e.g. 10% of packets can be lost),
which is encoded in the header of each packet.

Let /.o, be the end-to-end loss tolerance requested by the
application. Let n;, i € [0, H] be the nodes on the path from
the source ng to the destination ng, where H is the total
number of links on the path. Let ¢;, ¢ € [0, H — 1] denote the
probability that a packet sent by node n; will be successfully

delivered to the next node n;;. In order to satisfy the end-to-
end loss tolerance of the application, the following equation
should hold:

leQe =1- Hf{:_ol qi (1)

The value of ¢; changes depending on the number of link-
layer transmission attempts indicated to the MAC by JTP. Let
p; denote the probability that a single link-layer transmission
from n; to n;; fails, and let M; denote the total number of
link-layer transmission attempts requested for a packet on link
(ni,niv1). Then ¢; = 1 — pMi, which gives:!

M, = (M} @)
log(p;)
The challenge is to dynamically adjust the values of M;’s for
each packet in a flow so as to satisfy the desired /.o..

If the length of the path to the destination is known, the
values for ¢;’s can be directly computed from equation (1),
and encoded in the headers of packets. However, in a network
setting where the topological views at the nodes are typically
not accurate, the path length is estimated based on a node’s
current view. In JAVELEN, where views are hazy-sighted
scoped [2], a node that is closer to the destination, has a
more accurate view of its path to it. Thus, JTP carries out the
computation of ¢;’s at each node, as the packet travels toward
the destination, thus using increasingly accurate views.

Let [;; be the loss tolerance that is encoded in the packet
when received by node n;. Let H; be the number of links
from n; to the destination. Thus, we want:

it =11, ®)

For ease of exposition, assume JTP sets g; to be the same for
all the links, i.e. ¢; = ¢,% then:

1
q=(1—1s)™ (4)
If p; < (1—gq) then the node attempts to transmit the packet
only once. Otherwise, the number of transmission attempts,
M;, is computed using equation (2).
Before the node transmits the packet to its next-hop, it
updates the loss tolerance field as follows:

Hz:f’i_lqj =1—1y = qu;’-zg’;l_lqj =1—-1y= (%)
. L 1-— lt‘ 1- lt'
g = —" = 1-lLuy=—"=
q; 4
1—1y
Leci =1-
t(i+1) ¢

By dynamically adjusting the hop-by-hop success proba-
bility experienced by each packet, the end-to-end reliability
requirements are met even if the topological views at different
nodes are inconsistent, or the path changes. Moreover, by
assigning a loss tolerance target to each individual packet,
JTP enables the application to prioritize its packets (e.g. video
frames of varying importance).

1The success probability is equal to 220 ! PP —p)=(1- lel).

2It is straightforward to require different ¢;’s on different links. Such
unequal allocation policy may impose higher successful delivery requirement
on links that are less loaded or have higher available energy.
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Figure 2(a) shows the system-wide energy expenditure for
different levels of reliability over linear topologies of varying
size (see Section VII for simulation details). Figure 2(b)
demonstrates that by not overachieving (e.g. TCP-like full
reliability for all), nor underachieving (e.g. UDP-like no
reliability for all), JTP manages to save energy by satisfying
given application’s requirements.

V. DESTINATION BASED CONTROL
A. Path Monitoring using Flip-flop Filtering

One design concept of JTP is to adapt to a minimum the
frequency at which the destination node informs the source
of new transmission parameters (e.g. sending rate, per-packet
energy budget). JTP collects sample measurements of the state
of the connection’s path, e.g. the minimum available rate over
the links of the path, or the sum of per-packet transmission
energy. We denote by x; the it such sample. We use principles
from statistical quality control [28] to detect a significant
change in the path’s state, which then triggers the destination
to send additional feedback signal, in addition to feedback
sent regularly at a low frequency.

To that end, we estimate the EWMA’s z and range R as
follows:

xT =

R:

(1 —a)Z + ax;, initially z = xq (6)

(L=PB)R+ 8| i —xi1 |, initially R = %

R is used to estimate the deviation around Z and is calculated
only from samples x; within the following upper and lower
control limits:

R R
1o LOL= T35 )

Under normal operation, stable EWMA filters are em-
ployed, i.e. the weights o and 3 are small so short-term
variations are filtered out. As long as z; lies within the control
limits, the state of the connection’s path is considered stable
and feedback is only reported to the source at low frequency,
say every T seconds. Otherwise, x; is considered an outlier.
A consecutive number of outliers is used as indication of
significant and persistent change in the state of the path, which
would then trigger an immediate feedback to the source node.
At this point, the JTP destination switches to an agile EWMA
filter where a larger « value is used, so that z catches up with
the actual value. Once z; falls back again within the control

UCL=z+3

limits, the JTP destination switches back to the stable filter for
this connection. This usage of both stable and agile filters is
known as a Flip-flop Filter [19].

In our implementation, we set 7" as a function of the sending
rate. In addition, we place a lower bound on T, say 3 seconds.
Specifically,

3
T = maX(TLower,Bounda n X Z 1.

1 .
SendingRate)’ n
B. Contention Avoidance Mechanism

When the flip-flop path monitor triggers a new feedback
message, the path (flow) controller at the destination should
set the sending rate, and the energy budget to be used by the
source for the subsequent packets until a new feedback is sent.
The controller is more involved for the sending rate since the
source should share the available rate on the path by adapting
its sending rate up or down depending on whether the path is
underutilized.

1) PI2/MD Sending Rate Controller: This controller makes
use of the minimum available rate measured along the path of
the JTP connection. We denote by A the average available
rate measured at the JTP destination. If A > § then the
source increases its sending rate r in proportion to the current
available capacity and, to improve fairness among competing
flows, inversely proportional to the current sending rate:

rt+1) = T(t)-i‘KIf((tt;

On the other hand, if there is little available rate (4 < §), then
the source decreases its sending rate multiplicatively:

,0< Kr <1 (8)

r(t+1) = Kpr(t), 0<Kp<l1 9)
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Fig. 3. Rate adaptation for two competing JTP flows.

The throughput and stability analysis of this controller
can be found in the Appendix. Figure 3(a) demonstrates its

SNotice that this ensures that the destination does not send feed-
back/SNACK messages at a rate higher than the sending rate. Furthermore, the
exact value of T ower_Bound @nd n is application-dependent—for example,
the voice application module would use a lower value for T ower_Bound
and n to meet the timing constraints of voice delivery.



convergence to fairness for two competing flows—a long-
lived flow 1 is shown to adapt to a short-lived flow 2 which
starts and ends at times 1000 and 1250, respectively. (See
Section VII for simulation details.) Figure 3(b) demonstrates
the behavior of the flip-flop path monitor of flow 1—the
average available path rate, together with the control limits, as
well as the instantaneous path rate values collected (reported)
by JTP packets, are shown. We observe how the average
value catches up with the instantaneous reported values as the
monitor switches to the agile EWMA filter, so that the JTP
source quickly backs off or increases its rate accordingly. We
also observe other times where the monitor switches to the
agile EWMA filter in response to varying network conditions,
thus allowing the flow to quickly adapt.

We note that the JTP destination also limits the sending rate
by its delivery rate up the stack to the receiving-side of the
application. Furthermore, as discussed later, the source adapts
its sending rate down to accommodate the retransmission rate
of its packets by intermediate nodes.

2) Energy Budget Controller: Let eycyr(t) be the current
upper control limit of the flip-flop path monitor for the energy
consumption of individual packets. The energy budget e that
is reported back to the source is computed as follows:

Bevcr(t), B>1

where ( is a parameter defined by the application module
that denotes the importance of each packet, since the energy
budget controls the extra effort the network should invest in
the delivery of each packet under transient surges in energy
consumption, or in the case of route failures. g should be
greater than one so that the path monitor is able to detect
outliers.

et+1) = (10)

V1. CACHING

JTP employs in-network caching of data packets to avoid
end-to-end (source) retransmissions as much as possible. Upon
receiving a traversing ACK packet, a node checks whether
any packet(s) requested for retransmission, as expressed in
the Selective Negative ACK (SNACK) field, exist in its local
cache. Requested packets found in the cache are forwarded
downstream toward the destination.*

Besides the SNACK field, an ACK packet header also
contains a locally-recovered packets field, used to indicate
which of the packets requested for retransmission have been
already locally retransmitted by some node. Upstream nodes
check this field to avoid multiple retransmissions of the same
packets. When the source of the transfer receives an ACK, it
will only retransmit packets that remain in the SNACK field.

If the cache of a node becomes full, to insert a newly
arriving packet, the packet evicted from the cache is the least

“We note that efficiency achieved by catching and repairing errors earlier
using such in-network caching does not contradict the end-to-end argument of
system design [10]—the source does not delete its copy of a packet until it gets
an acknowledgment from the final destination that it has successfully received
the packet. Furthermore, the soft-state nature of caches provides resilience to
route changes.

recently manipulated (i.e. Least Recently Used (LRU) policy).
The motivation is that it is unlikely that those packets not
recently requested for retransmission would be ever requested
in the future.

A. Energy vs. Path Length

As the lengths of paths from sources to destinations in-
crease, the gain obtained from locally recovering packets
increases as well, making JTP more scalable. To evaluate the
benefits of in-network caching in JTP, we ran experiments with
linear topologies of varying size, activating and deactivating
the caching functionality (see Section VII for simulation
details). Figure 4(a) shows the percentage of energy overhead
introduced if in-network caching were not used.

Figure 4(b) shows the energy expenditure of each node
on the path for an 8-node linear topology. As expected,
nodes closer to the source suffer more from the end-to-end
retransmissions, and thus experience higher energy overhead
of up to 23% when caching is not used. The use of local
recovery from caches also results in a more equal energy
allocation over all the nodes along the path, since the burden
of recovering lost packets is distributed among all nodes.
In an arbitrary topology network, where flows are randomly
distributed between nodes, the role of in-network caching is
essential for equally saving energy at each node.

An analysis of in-network caching gain can be found in the
Appendix.

B. Controlling Routing Symmetry

In order for caching to yield maximum energy savings, com-
munication paths must be symmetric. Recall that JAVeLEN
employs next-hop routing to forward packets using increas-
ingly more accurate topological views toward destinations.
Next-hop routing also has lower overhead compared to source
routing approaches. Thus, one way to force routes to be
symmetric is to ensure that link metrics are symmetric. Recall
that the link metric in JAVeLEN is a quantized function
of signal-to-noise ratio. To increase metric symmetry, JTP
employs a contention-avoidance flow rate control mechanism,
thus it minimizes contention perceived at both nodes of a
link. Together with quantization, this maximizes the chances
of symmetric link costs and thus of symmetric routes.

Figure 4(c) shows the number of cache hits and source
retransmissions for 5 JTP flows over a 25-node random topol-
ogy. (See Section VII for simulation details.) The symmetry of
paths is demonstrated by the in-network cache hits experienced
by flows, resulting in more than two-third of the lost packets
recovered from caches rather than from sources. This in turn,
results in lower energy consumption per delivered application
data bit compared to TCP and ATP—e.g. JTP consumed
1.95 x 10~ Joules per bit, whereas TCP consumed 2.5x 1072,
Furthermore, JTP delivered more data to the applications—
JTP delivered 3.5Mb, whereas TCP delivered 1.8Mb.

C. Fair In-network Caching
Enabling mid-path nodes to retransmit packets on behalf of

sources may cause a violation of sending rate compliance im-
posed by the destination of a transfer. For the sake of fairness
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Fig. 5. Short- and long-term average of the reception rate for two competing
flows: (a) the source backs off for locally recovered packets; (b) it does not.

and congestion control, the source node must incorporate in-
network retransmissions in its sending rate calculations. To this
end, JTP forces sources to back off in accordance to the extra
traffic that is induced by in-network retransmissions. When an
ACK packet is received, the source uses the locally-recovered
packets field to adjust its sending rate. Let r(¢) be the rate
indicated to the source by a received ACK at time ¢. Let N
be the number of packets locally recovered within the network,
and let s;, j € [1, N] be the sizes of these packets. The source
computes an appropriate back-off period ¢, as follows:

ty — Zjvﬂ Sj
ri(t)

Figure 5 shows the short- (top plots) and long- (bottom plots)
term average of the packet reception rate (throughput) at the
destination for two competing flows. Flow 1 does not request
packet retransmissions (i.e. UDP-like flow), while flow 2
requires for all its packets to be delivered and thus invoking
the local recovery mechanism of the in-network caches. We
observe in the right plots, spikes in the reception rate of
flow 2 when it does not back off its sending rate to account
for its additional in-network retransmissions—the unfairness
introduced is more evident from the long-term average plots.

for a 25-node random topology.

Energy Gains from In-network Caching

VII. PERFORMANCE EVALUATION

A. Smulation Parameters

In this section, we present results from the extensive
evaluation and testing of JTP in the OPNET simulation
environment [29]. The results shown are the average of five
(independent) runs along with 95% confidence intervals. Each
simulation run lasted for 2500 seconds, and flows were started
randomly after a warm-up period of 900 seconds. Two types
of topology are considered:

Static Linear Topologies: These were used to evaluate perfor-
mance for various path lengths. The source and the destination
of two competing flows were placed at the two ends of the
network. To capture the varying quality of wireless links, the
value of the average pathloss of each link alternates between
low (good quality) and high (bad quality). Each link is in bad
state approximately 10% of the time. The average duration of
the bad period is 3 seconds.

Dynamic Random Topologies: In these experiments,
25 nodes were randomly placed in a field of 1000m x 500m.
Nodes move at speed varying from 0.5m/s to 2m/s. There
are 5 flows with random source-destination pairs.

Since none of the following protocols, against which we
compare JTP, support adjustable reliability, JTP results are for
0% loss tolerance.

TCP-SACK: In order to have a more competitive perfor-
mance, we compare against a rate-based flavor of TCP-SACK,
whereby the rate of each flow is set by the well-known
throughput equation of TCP [30]. Thus we remove the artifacts
from the window-induced burstiness of the data and ACK
streams. The SACK version helps TCP selectively retransmits
lost packets only.

ATP-like: In order to compare against the class of explicit
rate-based transport protocols, we implemented a protocol
which adjusts the sending rate based on explicit feedback
collected by intermediate nodes, supports only end-to-end
recovery, and has constant feedback from the receiver. The
feedback period is set to be larger than RTT as suggested for
ATP [6].

UDP: In some results we also include the UDP protocol, as
a constant-rate, minimum-requirement, protocol that does not
request for retransmissions and have no sending rate adaptation
mechanism.



—itp

5000 tep

vered Bit
ered(kb)

Energy per Deli
otal data deliv

1 15 1 15
Speed(m/s) speed(m/s)

(a) Total energy expended per appli- (b) Total data delivered to applica-
cation data bit delivered. tions.

Fig. 7. Results for Random Topologies with Mobility.

B. Performance Metrics

e Energy per delivered bit: This measure captures the system-
wide energy consumed to deliver each data bit to applications.
e Variance in nodes energy consumption: A lower value
indicates a more uniform energy consumption, and thus for a
given initial total energy equally distributed among the nodes,
a lower value extends the “lifetime” until the first node dies.
e Goodput: This measure captures the total rate at which the
network delivers data to the applications, and thus represents
how efficient the network resources are used.

C. Results

1) Linear Topologies: Figure 6(a) shows the energy per
delivered bit for each protocol for varying network sizes. JTP
is the most energy efficient protocol—even more efficient than
UDP, which is a minimum-effort protocol with no control
messages, nor retransmissions. This indicates that the extra
energy induced by JTP in the network yields dispropotionate
gains to the applications.

Figure 6(b) shows the total energy consumed by each node
in an 8-node linear topology. Figure 6(c) shows the variance in
energy consumed by each midpath node for various network
sizes. It is clear that JTP not only minimizes the energy
consumption but also alleviates, through in-network caching,
the unfairness in energy consumption introduced by end-to-
end (source) retransmissions.

Figure 6(d) demonstrates that JTP not only provides great
energy savings, but also achieves higher goodput. Without
sacrificing system’s performance, JTP minimizes feedback
control messages, which in a wireless network environment,
effectively “steal” bandwidth from users’ data.

2) Random Topologies: Figure 7(a) shows that JTP con-
sumes the least energy per delivered application data bit in
a mobile environment. Figure 7(b) shows that the total data
delivered to applications, as expected, drops as the speed of
nodes increases. As mobility increases, the number of network
control messages induced to keep the topology connected
increases. Thus, transport protocols which generate frequent
feedback traffic, such as ATP and TCP, suffer due to increased
contention.

VIII. CONCLUSIONS AND FUTURE WORK

We presented the design and evaluation of an energy-
conscious transport protocol (JTP) that targets low-power

ad hoc networks. JTP combines several features, no-
tably application-determined per-packet energy budget-
ing, lightweight multi-hop caching support, and variable
destination-controlled feedback. In this paper, we focused
on bulk data transfers with varying reliability requirements.
Future work includes other applications (e.g. voice, images),
and other in-network energy-aware algorithms (e.g. for cache
replacement, scheduling, and short-term “deflection” routing).

APPENDIX

Stability Analysis of P12/MD Sending Rate Controller

Consider a single JTP flow adapting its sending rate over a
fixed-capacity channel. For analytical tractability, let’s ignore
the EWMA computation of the available rate, that is, if r(t) <
C, then the JTP source adapts its rate as follows:

(€ —r))
r(t)
On the other hand, if »(¢) > C, then the JTP source adapts

its rate as follows:

rt+1) = r(t)+ Ky x (11)

r(t+1) = Kpxr(t) (12)

Observe that the system remains non-linear, with two op-
erating regions determined by whether the sending rate r(¢)
is less than or greater than the capacity C. We next consider
each of these two regions, and prove stability by showing that
the value of a positive Lyapunov function V' (r) decreases with
each iteration.

e r(t) < C Region: Define V(r) = C —r. Then:

Virt+1)=V(r@)=(C—-rit+1)—(C—-r() =

C— (r(t) + K7 x C;(;(t)) —(C = ()

=K/ x(——1)<0

r(t)
Thus, the only condition for V() to decrease is that K; > 0,
regardless of the exact value of K. Of course, the exact value
of K determines the tradeoff between speed of convergence
and quality of the steady-state behavior—a higher value of K7
leads to faster convergence but higher oscillations.

e r(t) > C Region: Define V(r) =r — C. Then:

Vir(t+1)) = V(@) = (rt+1) = C) — (r(t) — C) =
Kpxr(t)—=C—r(t)+C=—rt) x (1—Kp) <0

Observe that, for V' (r) to decrease, it is required that Kp < 1.

Thus, Ky > 0 and Kp < 1 are sufficient conditions
for convergence. Furthermore, at steady-state as ¢ — oo,
substituting =(¢ + 1) = r(¢) in Equation (11), we have
r(t) — C, hence the rate control is efficient.

Observe that in the case of lower frequency of sending-rate
update, the above analysis still applies, i.e. the system
converges albeit at a slower pace.
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Analysis of In-network Caching Gain

We analyze the cost in terms of the total number of link-

layer transmissions required to successfully deliver a total of &
packets over H links from the source to the destination. Let n
be the maximum number of link-layer transmissions allowed.
Let p be the probability that one link-layer transmission fails;
p is the same for all the links. The probability that a packet
is successfully transmitted over link i is P, = 1 — p™. The
probability that a packet is successfully transmitted from the
source to the destination is P.oes = (1 — p™)*.
e JTP with in-network caching: We assume a best-case
scenario whereby cache sizes are infinite, and the path is
symmetric, thus each lost packet will be recovered by the last
node which has successfully received it.

We compute the expected total number of link-layer trans-
missions, denoted by E[T/TF]. The presence of in-network
caching implies that each packet will be retransmitted over
each link for as many times as needed, until it is successfully
delivered to the next node. Thus, the expected number of
link-layer transmissions follows a geometric distribution with

mean:
1

B[] = —
IL—p
So each packet needs on average H x E[T;/TF] link-layer
transmissions to be delivered at its destination. The expected
total number of link-layer transmissions required by JTP in
order to deliver k packets is thus given by:

(13)

1
Emﬁﬂzkaxl

e JTP without caching: In the case of JTP with no in-network
caching (henceforth denoted by JNC), over each link, the
packet is transmitted at most n times. If its transmission still
fails, then it must be retransmitted from the source.

Denote by M > k, the random variable representing the
number of packets sent by the source until k& packets are
successfully delivered at the destination, then E[M] = PP’;S.

When a packet is received at a node, the average number
of link-layer transmissions that it triggers is:

E[TIJNC] =1-p)+201—p)p+---+n(l _p)pn—l +op”
_1-p"
=1

malized by total delivered bits in ann8des of a path for varying path length.

Results for Linear Topologies.

Given that the link success probability is P;, the probability
that a packet makes it over i links is PZ, which then triggers
E[T/N¢] link-layer transmissions. Thus, the total number of
link-layer transmissions for JNC is given by:

H—-1
BTN = Y E[M] x P! x E[T/N¢]
=0
_ k@ —p)a - —p")") kx H
(1 —=pm)H(1 —p)pm (1 —=pm)H=1(1 — p)

(14)

For H = 1, equation (14) degenerates to (13). Observe that
the cost of JNC is W times higher than that of JTP.
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